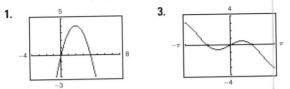
Section 1.3 (page 67)



(a) 0 (b) About 0.52 or $\pi/6$ (a) 0 (b) -55. 8 7. -1 9. 0 11. 7 13. 2 15. 1 **17.** 1/2 **19.** 1/5 **21.** 7 **23.** (a) 4 (b) 64 (c) 64 **25.** (a) 3 (b) 2 (c) 2 **27.** 1 **29.** 1/2 **31.** 1 **33.** 1/2 **35.** -1 **37.** (a) 10 (b) 5 (c) 6 (d) 3/2**39.** (a) 64 (b) 2 (c) 12 (d) 8 **41.** (a) -1 (b) -2 $g(x) = \frac{x^2 - x}{2}$ and f(x) = x - 1 agree except at x = 0.

43. (a) 2 (b) 0

$$g(x) = \frac{x^3 - x}{x - 1}$$
 and $f(x) = x^2 + x$ agree except at $x = 1$.
45. -2
 $f(x) = \frac{x^2 - 1}{x + 1}$ and $g(x) = x - 1$ agree except at $x = -1$.
47. 12
 $f(x) = \frac{x^3 - 8}{x - 2}$ and $g(x) = x^2 + 2x + 4$ agree except at $x = 2$.
49. -1 51. 1/8 53. 5/6 55. 1/6 57. $\sqrt{5}/10$
59. -1/9 61. 2 63. $2x - 2$
65. 1/5 67. 0 69. 0 71. 0 73. 1 75. 3/2
77. $\frac{2}{-3}$ The graph has a hole at $x = 0$.

Answers will vary. Example:

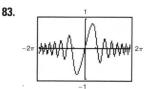
Answers will vary. Example:

	x	-0.1	-0.01	-0.001]
	f(x)	-0.263	-0.251	-0.250	
	x	0.001	0.01	0.1	
	f(x)	-0.250	-0.249	-0.238	
	$\lim_{x\to 0}[1/($	$\frac{2+x}{x}$	$(1/2) \approx -0$	$0.250 \left(\text{Actu} \right)$	ual limit is $-\frac{1}{4}$.
81.		4		X	
		Å	T	he graph ha	as a hole at $t = 0$

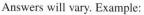
Answers will vary. Example:

t	-0.1	-0.01	0	0.01	0.1
f(t)	2.96	2.9996	?	2.9996	2.96

 $\lim_{t \to 0} \frac{\sin 3t}{t} = 3$



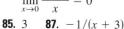
The graph has a hole at x = 0.

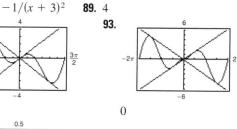


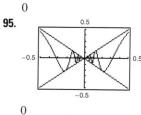
x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	-0.1	-0.01	-0.001	?	0.001	0.01	0.1

$$\lim \frac{\sin x^2}{x^2} = 0$$

91.

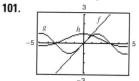






The graph has a hole at x = 0.

- **97.** f and g agree at all but one point if c is a real number such that f(x) = g(x) for all $x \neq c$.
- 99. An indeterminate form is obtained when evaluating a limit using direct substitution produces a meaningless fractional form, such as $\frac{0}{0}$.



The magnitudes of f(x) and g(x) are approximately equal when x is close to 0. Therefore, their ratio is approximately 1.

103. -64 ft/sec (speed = 64 ft/sec) **105.** - 29.4 m/sec **107.** Let f(x) = 1/x and g(x) = -1/x.

 $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ do not exist. However,

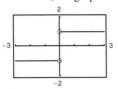
$$\lim_{x \to 0} \left[f(x) + g(x) \right] = \lim_{x \to 0} \left[\frac{1}{x} + \left(-\frac{1}{x} \right) \right] = \lim_{x \to 0} 0 = 0$$

and therefore does exist. 109-113. Proofs

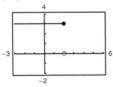
115. Let
$$f(x) = \begin{cases} 4, & \text{if } x \ge 0 \\ -4, & \text{if } x < 0 \end{cases}$$

$$\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 4 = 4$$
$$\lim_{x \to 0} f(x) \text{ does not exist because for } x < 0, f(x) = -4 \text{ and for } x \ge 0, f(x) = 4.$$

117. False. The limit does not exist because the function approaches 1 from the right side of 0 and approaches -1 from the left side of 0. (See graph below.)



- 119. True.
- **121.** False. The limit does not exist because f(x) approaches 3 from the left side of 2 and approaches 0 from the right side of 2. (See graph below.)



- 123. Proof
- **125.** (a) All $x \neq 0, \frac{\pi}{2} + n\pi$

(b) 2 $-\frac{3\pi}{2}$ $-\frac{2}{2}$ $-\frac{3\pi}{2}$ $-\frac{2}{2}$

The domain is not obvious. The hole at x = 0 is not apparent from the graph.

(c)
$$\frac{1}{2}$$
 (d) $\frac{1}{2}$

127. The graphing utility was not set in radian mode.